Quivers for silting mutation
نویسندگان
چکیده
منابع مشابه
Silting mutation in triangulated categories
In representation theory of algebras the notion of ‘mutation’ often plays important roles, and two cases are well known, i.e. ‘cluster tilting mutation’ and ‘exceptional mutation’. In this paper we focus on ‘tilting mutation’, which has a disadvantage that it is often impossible, i.e. some of summands of a tilting object can not be replaced to get a new tilting object. The aim of this paper is ...
متن کاملMaximal Green Sequences of Exceptional Finite Mutation Type Quivers
Maximal green sequences are particular sequences of mutations of quivers which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti–Córdova–Vafa in the context of supersymmetric gauge theory. The existence of maximal green sequences for exceptional finite mutation type quivers has been shown by Alim–Cecotti–Córdova–Espahbodi–Rastogi–Vafa except...
متن کاملQuivers of Finite Mutation Type and Skew-symmetric Matrices
Quivers of finite mutation type have been classified recently in [4]. Main examples of these quivers are the quivers associated with triangulations of surfaces as introduced in [5]. They are also closely related to the representation theory of algebras [1]. In this paper, we study structural properties of finite mutation type quivers. We determine a class of subquivers, which we call basic quiv...
متن کاملCluster Mutation-Periodic Quivers and Associated Laurent Sequences
We consider quivers/skew-symmetric matrices under the action of mutation (in the cluster algebra sense). We classify those which are isomorphic to their own mutation via a cycle permuting all the vertices, and give families of quivers which have higher periodicity. The periodicity means that sequences given by recurrence relations arise in a natural way from the associated cluster algebras. We ...
متن کاملMutation-periodic quivers, integrable maps and associated Poisson algebras.
We consider a class of map, recently derived in the context of cluster mutation. In this paper, we start with a brief review of the quiver context, but then move onto a discussion of a related Poisson bracket, along with the Poisson algebra of a special family of functions associated with these maps. A bi-Hamiltonian structure is derived and used to construct a sequence of Poisson-commuting fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2017
ISSN: 0001-8708
DOI: 10.1016/j.aim.2016.11.024